
Pointer variables
Lecture 9

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

1

Variables

• variable in a program is something with a name, the value of
which can vary

 int var;

• compiler and linker assigns a specific block of memory within
the computer to hold the value of that variable

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

2

Variable

int x=100;

cout<<x;

cout<<(&x);

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

3

Memory

100 x 234

Variable

 name variable

Address

(&x)
Value of

variable

Pointers

• variable that represents
the location (rather than
the value) of a

 int x;

 int *ptr;

 ptr=&x;

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

4

Memory

100 x 234

Variable

 name variable

Address

(&x)
Value of

variable

ptr

How to access the value of
variable through pointer?

void main()

{ int x=10;

 int *ptr=&x;

 cout<<ptr;

 cout<<(*ptr);

}

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

5

Pointer to objects

void main()

{ A a1;

 A *ptr;

 ptr=&a1;

 cout<<ptr->x;

 cout<<ptr->y;

 ptr->display();

}

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

6

class A

{ public:

 int x;

 int y;

 A() { x=10;
y=20;}

 void display()

 { cout<<x<<y;}

};

Dynamic memory
management
• C++ enables programmers to control the

allocation and deallocation of memory in a
program for any built-in or user-defined type.

• Dynamic allocation is the creating of an object
while the program is running, using the new
operator.

• This is called dynamic memory management
which is accomplished using new and delete
operators.

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

7

new operator

• The new operator allows dynamic allocation of memory

• The object or variable is created in the free store (heap) – a
region of memory assigned to each program for storing
objects created at execution time

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

8

Example

void main()

{ A *ptr;

 ptr=new A;

 cout<<ptr->x;

 cout<<ptr->y;

 ptr->display();

}

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

9

class A

{ public:

 int x;

 int y;

 A() { x=10;
y=20;}

 void display()

 { cout<<x<<y;}

};

Basic data types

• C++ allows us to provide an initializer for a newly created
fundamental-type variable

 int *p=new int(13);

 double *pi=new double(3.14)

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

10

Delete operator

• To destroy a dynamically allocated object and free the space
for the object, use delete operator

• The delete operator erases the object from the heap.

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

11

Example

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

12

class A

{ public:

 int x;

 int y;

 A() { x=10;
y=20;}

 void display()

 { cout<<x<<y;}

};

void main()

{ A *ptr;

 ptr=new A;

 cout<<ptr->x;

 cout<<ptr->y;

 ptr->display();

 delete ptr;

}

Memory leaks

A memory leak is an error condition that is created when an
object is left on the heap with no pointer variable containing
its address. This might happen if the object's pointer goes out
of scope:

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

13

void MySub()

{

 Student * pS = new Student;

 // use the Student for a while...

} // pS goes out of scope

(the Student's still left on the heap)

Dangling pointers

A dangling pointer is created when you delete its storage and
then try to use the pointer. It no longer points to valid storage
and may corrupt the program's data.

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

14

double * pD = new double;

*pD = 3.523;

.

.

delete pD; // pD is dangling...

.

.

*pD = 4.2; // error!

Avoid dangling pointers

To avoid using a dangling pointer, assign NULL to a pointer
immediately after it is deleted. check for NULL before using
the pointer M

o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

15

delete pD;

pD = NULL;

.

.

if(pD != NULL) // check it first...

 *pD = 4.2;

Assignment

• What do you mean by Dangling of Pointers.

M
o
n
d
ay

,
Ja

n
u
ar

y
 1

3
,
2
0
2
0

16

